Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Front Endocrinol (Lausanne) ; 13: 780663, 2022.
Article in English | MEDLINE | ID: covidwho-1731765

ABSTRACT

There seems to be a bidirectional interplay between Diabetes mellitus (DM) and coronavirus disease 2019 (COVID-19). On the one hand, people with diabetes are at higher risk of fatal or critical care unit-treated COVID-19 as well as COVID-19 related health complications compared to individuals without diabetes. On the other hand, clinical data so far suggest that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may result in metabolic dysregulation and in impaired glucose homeostasis. In addition, emerging data on new onset DM in previously infected with SARS-CoV-2 patients, reinforce the hypothesis of a direct effect of SARS-CoV-2 on glucose metabolism. Attempting to find the culprit, we currently know that the pancreas and the endothelium have been found to express Angiotensin-converting enzyme 2 (ACE2) receptors, the main binding site of the virus. To move from bench to bedside, understanding the effects of COVID-19 on metabolism and glucose homeostasis is crucial to prevent and manage complications related to COVID-19 and support recovering patients. In this article we review the potential underlying pathophysiological mechanisms between COVID-19 and glucose dysregulation as well as the effects of antidiabetic treatment in patients with diabetes and COVID-19.


Subject(s)
COVID-19/complications , Diabetes Complications/virology , Diabetes Mellitus/etiology , COVID-19/epidemiology , COVID-19/metabolism , COVID-19/pathology , Causality , Comorbidity , Diabetes Complications/epidemiology , Diabetes Complications/metabolism , Diabetes Mellitus/epidemiology , Diabetes Mellitus/pathology , Humans , Patient Acuity , Risk Factors , SARS-CoV-2/pathogenicity
3.
Endocr Connect ; 10(9): R229-R239, 2021 Sep 20.
Article in English | MEDLINE | ID: covidwho-1448608

ABSTRACT

Endocrine system plays a vital role in controlling human homeostasis. Understanding the possible effects of COVID-19 on endocrine glands is crucial to prevent and manage endocrine disorders before and during hospitalization in COVID-19-infected patients as well as to follow them up properly upon recovery. Many endocrine glands such as pancreas, hypothalamus and pituitary, thyroid, adrenal glands, testes, and ovaries have been found to express angiotensin-converting enzyme 2 receptors, the main binding site of the virus. Since the pandemic outbreak, various publications focus on the aggravation of preexisting endocrine diseases by COVID-19 infection or the adverse prognosis of the disease in endocrine patients. However, data on endocrine disorders both during the phase of the infection (early complications) and upon recovery (late complications) are scarce. The aim of this review is to identify and discuss early and late endocrine complications of COVID-19. The majority of the available data refer to glucose dysregulation and its reciprocal effect on COVID-19 infection with the main interest focusing on the presentation of new onset of diabetes mellitus. Thyroid dysfunction with low triiodothyronine, low thyroid stimulating hormone, or subacute thyroiditis has been reported. Adrenal dysregulation and impaired spermatogenesis in affected men have been also reported. Complications of other endocrine glands are still not clear. Considering the recent onset of COVID-19 infection, the available follow-up data are limited, and therefore, long-term studies are required to evaluate certain effects of COVID-19 on the endocrine glands.

4.
Eur J Heart Fail ; 23(11): 1916-1926, 2021 11.
Article in English | MEDLINE | ID: covidwho-1366228

ABSTRACT

AIMS: SARS-CoV-2 infection may lead to endothelial and vascular dysfunction. We investigated alterations of arterial stiffness, endothelial coronary and myocardial function markers 4 months after COVID-19 infection. METHODS AND RESULTS: In a case-control prospective study, we included 70 patients 4 months after COVID-19 infection, 70 age- and sex-matched untreated hypertensive patients (positive control) and 70 healthy individuals. We measured (i) perfused boundary region (PBR) of the sublingual arterial microvessels (increased PBR indicates reduced endothelial glycocalyx thickness), (ii) flow-mediated dilatation (FMD), (iii) coronary flow reserve (CFR) by Doppler echocardiography, (iv) pulse wave velocity (PWV), (v) global left and right ventricular longitudinal strain (GLS), and (vi) malondialdehyde (MDA), an oxidative stress marker, thrombomodulin and von Willebrand factor as endothelial biomarkers. COVID-19 patients had similar CFR and FMD as hypertensives (2.48 ± 0.41 vs. 2.58 ± 0.88, P = 0.562, and 5.86 ± 2.82% vs. 5.80 ± 2.07%, P = 0.872, respectively) but lower values than controls (3.42 ± 0.65, P = 0.0135, and 9.06 ± 2.11%, P = 0.002, respectively). Compared to controls, both COVID-19 and hypertensives had greater PBR5-25 (2.07 ± 0.15 µm and 2.07 ± 0.26 µm, P = 0.8 vs. 1.89 ± 0.17 µm, P = 0.001), higher PWV (carotid-femoral PWV 12.09 ± 2.50 vs. 11.92 ± 2.94, P = 0.7 vs. 10.04 ± 1.80 m/s, P = 0.036) and impaired left and right ventricular GLS (-19.50 ± 2.56% vs. -19.23 ± 2.67%, P = 0.864 vs. -21.98 ± 1.51%, P = 0.020 and -16.99 ± 3.17% vs. -18.63 ± 3.20%, P = 0.002 vs. -20.51 ± 2.28%, P < 0.001). MDA and thrombomodulin were higher in COVID-19 patients than both hypertensives and controls (10.67 ± 0.32 vs 1.76 ± 0.03, P = 0.003 vs. 1.01 ± 0.05 nmol/L, P = 0.001 and 3716.63 ± 188.36 vs. 3114.46 ± 179.18 pg/mL, P = 0.017 vs. 2590.02 ± 156.51 pg/mL, P < 0.001). Residual cardiovascular symptoms at 4 months were associated with oxidative stress and endothelial dysfunction markers. CONCLUSIONS: SARS-CoV-2 may cause endothelial and vascular dysfunction linked to impaired cardiac performance 4 months after infection.


Subject(s)
COVID-19 , Heart Failure , Vascular Stiffness , Glycocalyx , Humans , Prospective Studies , Pulse Wave Analysis , SARS-CoV-2
5.
Medicine (Baltimore) ; 99(52): e23845, 2020 Dec 24.
Article in English | MEDLINE | ID: covidwho-990929

ABSTRACT

ABSTRACT: COVID-19 pandemic caused a major crisis, affecting and straining health care systems, including some very advanced ones. The pandemic may have also indirectly affected access to health care for patients with other conditions, not related to COVID-19, even in countries not overwhelmed by an outbreak.We analyzed and compared visits to the emergency room (ER) department during the same calendar period of 2019 and 2020 (from March 1 to March 31 of each year) in our hospital, a medium size, tertiary center, located in the center of Athens, which is not a referral center for COVID-19.Total ER visits were reduced by 42.3% and the number of those requiring hospitalization by 34.8%. This reduction was driven by lower numbers of visits for low risk, non-specific symptoms and causes. However, there was a significant decrease in admissions for cardiovascular symptoms and complications (chest pain of cardiac origin, acute coronary syndromes, and stroke) by 39.7% and for suspected or confirmed GI hemorrhage by 54.7%. Importantly, number of ER visits for infections remained unchanged, as well as the number of patients that required hospitalization for infection management; only few patients were diagnosed with COVID-19.During the initial period of the pandemic and lock-down in Greece, there was a major decrease in the patients visiting ER department, including decrease in the numbers of admissions for cardiovascular symptoms and complications. These observations may have implications for the management of non-COVID-19 diseases during the pandemic.


Subject(s)
COVID-19/epidemiology , Emergency Service, Hospital/statistics & numerical data , Hospitalization/statistics & numerical data , Tertiary Care Centers/statistics & numerical data , Adult , Aged , Female , Greece/epidemiology , Health Services Accessibility , Health Services Needs and Demand , Humans , Male , Middle Aged , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL